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Abs t r ac t -The  deposition of polydisperse particles under the influence of gravity is examined 
using computer simulation. A parameter, c, that represents the standard deviation of particle size 
is used for studying the effect of the variation in polydispersity on the resulting microstructures. 
Structural correlations are examined through contact networks, radial and angular distribution func- 
tions, and diffraction patterns. The results show that the onset of ordering appears near 0=0.05 
as g is decreased. The long-range ordering of the structures is not influenced by the introduction 
of a small amount of polydispersity, which may increase the uniformity of local density distribution 
in the angular direction. Polydisperse systems with small deviations in size display stronger positional 
order in some directions and this in turn contributes to the uniformity of overall packing structures. 

INTRODUCTION 

The packing problem has received considerable at- 
tention in chemical engineering Ell  since the charac- 
teristics of packings (or, deposits, or sediments) in- 
fluence transport phenomena in porous media, as in 
the case of fluid flow and heat transport in packed 
bed reactors and adsorption columns, filtration, drying 
of granular materials, diffusion and reaction in catalyst 
particles, etc. In the recent years the general class 
of packing problems further has relevance to deposi- 
tion and coating phenomena and to the resulting mi- 
crostructure of the deposits [2, 3]; for example, the 
fabrication of films and coatings via liquid-phase as 
well as vapor-phase deposition processes in fabrication 
of electronic, magnetic, and optical devices. 

It is also important to note that most of the above 
studies have been mainly limited to monodisperse pac- 
kings, although the use of polydisperse particles is 
more common in practice. One motivation for using 
polydisperse particulate systems is the existence of 
an optimum particle size distribution that maximizes 
the volume fraction of particles in a given packing. 
It is of very significant practical interest to determine 
such a particle size distribution. Another reason for 
the interest in polydisperse systems is the occurrence 
of a variety of packing problems such as mixing, per- 
colation, segregation, etc., which are also practical sig- 
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nificance in many applications. 

Studies of polydisperse systems have been confined 
mainly to binary mixtures of particles because of the 
resulting simplicity. Most of the useful information 
available for polydisperse systems is therefore restric- 
ted to binary mixtures regardless of whether the ap- 
proach used is theoretical, experimental, or based on 
computer simulations; in particular, no systematic 
study of multicomponent systems with more than two 
components is available. In most cases, particle size 
distributions obtained in practice can be approximated 
with sufficient accuracy by continuous particle size dis- 
tributions, which are determined in terms of just a 
few parameters. A few examples of previous studies 
which are relevant to the focus of the present paper 
and serve as background to this study are summarized 
in Table 1, where bulk properties such as packing 
fraction, porosity, and coordination number of the re- 
sulting structures as functions of particle characteris- 
tics and packing methods have been examined. In con- 
trast, little information about the effects olf particle 
size distribution on the variations in the structures 
of the deposits is available. Recently, interest has ex- 
tended to (i) the effects of the local arrangement of 
particles on the overall packing structures, e.g., in the 
case of the sintering of ceramic powder compacts [9, 
10], and (ii) the effect of polydispersity on phase be- 
havior e.g., in the case of hard-sphere colloidal suspen- 
sions [11,12]. It is however surprising that, although 
the structures of the deposits frequently have aniso- 
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Table 1. A list of  computer simulation approaches for random packing of  polydisperse particles with a continuous size 
distribution 

Authors Type of polydispersity Geometrical characteristics studied 
Powell [4] 
Suzuki & Oshima [5] 

Rodriguez et al. [6] 
Dickinson et al. [7] 

Soppe [8] 

Log-normal 
Log-normal, Log-uniform 
Rosin-Rammler, Anderson 
Triangular 
Triangular 

Log-normal 

Packing fraction; Coordination number 
Void fraction; Coordination number 

Packing fraction; Coordination number 
Packing fraction; Pore size distribution; 

Radial distribution function 
Packing fraction; Pore size distribution: 

Radial distribution function; 
Coordination number 

tropic properties, methods appropriate for characteri- 
zing the anisotropy have not been used in most cases. 

The objectives of the present work are (i) to develop 
general characterization methods for analyzing micro- 
structures of deposits and (ii) to investigate the effects 
of polydispersity on microstructure formation of depo- 
sits. The paper begins with a brief summary of the 
algorithm used and the essential computational details, 
which are available elsewhere [-3]. Following this, the 
structural features of the packings (or, deposits) gener- 
ated by the simulations are examined using local den- 
sity distributions, diffraction patterns and so-called 
'contact-network' diagrams. 

D E P O S I T I O N  A L G O R I T H M  

First a vertical strip into which the particles are 
deposited is considered. The particles, whose radii are 
already chosen from a given size distribution, enter 
this 'chamber'  one by one from the top at random 
positions, distributed uniformly along the width of the 
chamber. Each particle falls along the direction of the 
external field (in this case, gravity) and comes into 
contact with either a previously deposited particle or 
the substrate. If the particle reaches and makes con- 
tact with the substrate, it is assumed to rest there 
permanently. If, on the other hand, it comes into con- 
tact with a previously deposited particles, it rolls down 
until it finds another particle or the substrate. If it 
makes contact with another particle, one determines 
if the current position of the rolling particle is stable. 
For this purpose, the position is assumed to be stable 
if the center of the rolling particle lies between the 
centers of two contacting particles. Otherwise, the rol- 
ling particle is allowed to continue to move (roll or 
fall, as the case may be), until a suitable host is found. 
This entire procedure is repeated until a predeter- 
mined number of particles is deposited. In order to 

avoid boundary condition periodic boundary condi- 
tions are applied along the horizontal direction, where 
the periodicity of the strip is taken to be 40 times 
the particle diameter of unit length. 

In the present work a particle size distribution is 
introduced in terms of Gaussian distribution given 
by 

fiR) = exp[ - (R - Ra,,~)2/2G2]/(21w32) 1/2, (1) 

where R is the particle radius, P~g is the average par- 
ticle radius, and ~ is the standard deviation in multi- 
ples of the average diameter of particle, which is also 
used here as a 'polydispersity index'.  Fig. 1 shows 
the normal distribution of particle radii for different 
polydispersity indices. Also in order to keep the range 
of particle size reasonable, lower and upper cutoff li- 
mits are set at 0.1 and 0.9, respectively. Note that 
the cutoff limits do not affect the overall particle size 
distributions for ~ smaller than 0.15 (see Fig. 1). 

In the present work the individual effects of polydis- 
persity on the structures of deposits are investigated. 
The results reported are based on the deposition of 
a total of 4,000 particles and the average over 2[; confi- 
gurations. 

CHARACTERIZATION OF  S T R U C T U R E S  

The structure of the deposits generated in the si- 
mulations is analyzed using contact-network diagram, 
diffraction patterns, and radial and angular distribution 
functions of particle positions. For calculating these, 
only those particles within _+ 30% from the mid point 
are taken so that the influence of the substrate and 
of the free 'surface' at the top of the packing is avoid- 
ed. The diffraction patterns are prepared using the 
structure factor S(q), which is defined by [13] 

S(q) = ( l / M ) <  [ Xexp(iq-  r,) [2> ; j = 1,---,M (2) 
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Fig. 1. The normal distribution function of particle radii, 
f(R):expr-(R--l~,g)2/2o2l/(2nc~2) 1/2, where P ~  
is the average radius and c~ is the standard devia- 
tion. 

where ri is the position vector of the j-th particle, the 
summation is over all M particles in the chosen region, 
and the bracket <"" > denotes the statistical average 
over the configurations. 

The radial distribution function, g(r), is a measure 
of the probability of finding two particles at any cen- 
ter-to-center separation r and is given by 

g(r) = [An(r)/2nrAr]/pa,g (3) 

where [An(r)/2nrAr] is equal to p(r), the local particle 
density, with An(r) equal to the number of particles 
in the interval Er, r +  Ar]. The function, g(r), however, 
is suitable only for isotropic distributions of the parti- 
cles. The above definition can be generalized to in- 
clude the angular dependence of the density variation 
through 

g(r, 0)= JAn(r, O)/rArAO]/pa~., (4) 

where An(r, 0) is the number of particles in the joint 
interval Jr, r + A r ]  and [-0, 0+A0] .  In both Eqs. (3) 
and (4), pang is the overall average density of the pac- 
king. 

The correlation length is defined using the variation 
of the function r defined as 

�9 (r)= [-(1/n)Z{g(r,)- 1}z]~/2; n =  1,...,M (5) 

where Jr,, i=l,.-. ,M} is the discrete set of r-values 
for which g(r) has been calculated. In Eq. (5), r~ corre- 
sponds to largest value of r for which g(r) is available; 
r~ is taken such that the value of g(rD approaches the 
sufficiently asymptotic value of unity. The correlation 
length L is then defined as 

Fig. 2. Contact networks corresponding to the packing structures. 
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Fig. 3. Diffraction patterns corresponding to the packing structures. 

k =  r. such that T ( r . ) =  e 

where ~ is a small number  <1. 

(6) 

R E S U L T S  AND DISCUSSIONS 

First one can visually compare the structures that 
are generated as the polydispersity index is varied. 
Typical examples of the structures obtained for a set 
of selected values of o are shown as the corresponding 

contact-network diagrams in Fig. 2. From this figure 
one notes a gradual change in the structure as the 
magnitude of o is changed. It has been observed [-2] 

that the particles tend to form ordered (crystalline) 
structures in the case of monodisperse packing (i.e., 
in the case of polydispersity index, c, near zero). As 
the polydispersity index increases the ordering of the 
particles gradually disappears due to the gradual re- 
duction in the uniformity of the particle sizes. A close 
look at Fig. 2 reveals that, as the polydispersity index 
increases, the number  of polygons increases and their 
size becomes larger. It is also clear that the polygons 
are the source of defects. A large polygon in a contact 
network diagram may be due to a large pore surround- 
ed by many particles or due to a collection of large 
particles. Small increases in c lead to a frequent occur- 
rence of defects such as stacking faults along ordered 
domains and tend to divide the ordered domains into 

smaller ones (see Figs. 2a-d for o=0-0.0025). But as 
c increases, polygonal defects appear randomly with- 
out any preferential direction, although small groups 
of rhombic units can still be found (see Figs. 2e-f for 

o=0.05-0.075). As the value of c becomes larger, such 
ordered domains disappear completely and the basic 
unit in the structures changes from a rhombic cell 
to a mixture of polygons with small triangles (see Figs. 
2g-h for c:0.1-O.,i). 

Fig. 3 presents two-dimensional projections of the 
diffraction patterns for the structures shown in Fig. 
2. It has been observed [-2] that the diffraction pattern 
corresponding to o = 0 has two strong scattering direc- 
tions. As the polydisperse index increases slightly, the 
scattering directions seem to remain unchanged, but 
the streaks along the two scattering directions become 
a little more diffuse (see Figs. 3b-c). As the polydisper- 
sity index becomes larger than 0.025, the scatiLering 
directions move away from each other and the diffrac- 
tion patterns eventually become circular and diLffuse, 
indicating the absence of sizable crystalline domains. 
This observation is very similar to that found in the 
packings of adhesive particles E2]. But such diffraction 
rings are observed only for o near 0.025-0.05. Beyond 
this range of c, the; diffraction patterns tend to become 
diffuse significantly and the rings fade away rapidly 
at large q's. The first ring is still noticeable for o as 
large as 0.1, but dissipates for larger o's (see FiLg. 3h, 

for o = 0.4). 
The above observations are also illustrated in Fig. 

4, which shows radial distribution functions, g(r), for 
a few values of o. One can observe that the peaks 
for large r 's disappear as o increases, thus indicating 

the disappearance of the ordering in the structures. 
Note that the magnitude of g(r) in the near-field re- 
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Fig. 4. The changes in the radial distribution functions, g(r), for different polydispersity indices. 

gion is gradually reduced as ~ increases, but the peaks 
still remain at large r 's for smaller o (see Figs, 4b-c). 

Also note that the peaks at large r for e - - 0  are sharp- 
er than those when ~=0.005 or 0.01, but have more 
skewed shapes. Fig. 5 shows the correlation length 
obtained from the radial distribution function for dif- 
ferent values of o. Note a sharp decline in the correla- 

tion length with increasing o for different k indicating 
a sharp change from an ordered structure to a disor- 
dered one. Such a structural transition at a value of 
c in the interval E0.025, 0.05] is consistent with the 
observation from the diffraction patterns shown in Fig. 

3. 
In addition, it is interesting to investigate the direc- 
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Fig. 5. Correlation lengths obtained from the radial distri- 
bution function, g{r), for different polydispersi~ 
indices. 
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Fig. 6. Angular dependence of g(r, 0) at r= 1.05 for different polydispersity indices. 

tional correlation in the packing structures as a func- 
tion of c. As illustrated in Fig. 6, from the near-neigh- 
bor value of g(r, 0) (i.e., for r =  1) for various c, one 
observes two dominant angular directions along which 
there is a high probability of interparticle contact. With 
increases in c, the sharp peaks shown from Fig. 6a 
for c = 0  decrease rapidly and become broader, and 
the angle between the two peaks increases. But no 
other dominant direction of growth is found. The 
above observations are illustrated more quantitatively 
from normalized local density distributions, g(r, 0), 
along the radial and angular directions for a fl~w values 
of c. Consistent with the observations based on the 

diffraction patterns, one sees a monotonic decrease 

in positional correlation for 0 =  60 ~ with increases in 
c. But note that the long range of correlation i,~ pre- 
served along some directions (for 0=45~ Note also 
that, while the peaks for c = 0 show some distuLrban- 
ces, but those for :nonzero but small o 's (i.e., c =  0.005 
and 0.01) become more stabilized and have higher val- 
ues than those for c = 0 .  Based on these, one carl con- 
clude that the introduction of a small amount of poly- 
dispersity (i.e., --0.01) does not change the long-range 
ordering of the structures and may, in fact, increase 
the uniformity of local density distribution in the 
angular direction (also see Figs. 4a-c). 

The above observations can be clearly seen in the 
angular dependence of the correlation length on the 
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Fig. 7. Angular dependence of correlation lengths obtain- 
ed from g(r, 0) for different polydispersity indices. 

polydispersity index, shown in Fig. 7. This tendency 
is very similar to that observed at r =  1.05 (see Fig. 
6). Note that the correlation length has its maximum 
value within the range 0=300-60 ~ . The maximum 
tends to shift to the right (i.e., to higher angles). This 
indicates that packings with small polydispersity have 
a strong directionality with respect to long-range cor- 
relation. It is very interesting to investigate the varia- 
tion of the correlation length with c at each angle. 
For 0 = - - 5 0 ~  ~ and ~ 0 ~  ~ the correlation 
length decreases sharply as c increases. This agrees 
well with the variation of the correlation length obtain- 
ed from g(r) (see Fig. 6). But for 0 = - - 1 5 ~  ~ the 
correlation length shows a sharp increase with increa- 
sing c for small values of c (i.e., 6=0.005 and 0.01) 
and decreases sharply for large o's. This observation 
becomes clearer when one examines g(r, 0) informa- 
tion for very small 6 [-2]. One can conclude from these 
that polydisperse systems with small deviations in size 
display stronger positional order in some directions 
and that this in turn contributes to the uniformity of 
overall packing structures. Also one can conclude that 
the onset of ordering (or crystallization) appears near 
6=0.05 as 6 is decreased (see Figs. 3, 5, and 7). 

NOMENCLATURE 

d :diameter of the particle 

g(r) :cylindrically averaged radial distribution func- 
tion 

g(r, 0) : positional correlation (distribution) function in 
r and 0 

N :total number of particles 
q : scattering vector 
r :position vector of a particle in real space 
S(q) : static structure factor 

Greek Let te r s  
:cutoff value of ~F(r) defined in Eq. (6) 

k :correlation length defined in Eq. (6) 
0 :angle between r and the horizontal direction 
p(r) :local particle density 
6 : polydispersity index 
~(r) : function defining the correlation length 
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